Controlled Release of Dexamethasone From an Intravitreal Delivery System Using Porous Silicon Dioxide

نویسندگان

  • Huiyuan Hou
  • Chengyun Wang
  • Kaihui Nan
  • William R. Freeman
  • Michael J. Sailor
  • Lingyun Cheng
چکیده

PURPOSE The current study aims to evaluate a porous silicon-based drug delivery system meant for sustained delivery of dexamethasone (Dex) to the vitreous and retina. METHODS Dexamethasone was grafted covalently into the pore walls of fully oxidized porous silicon particles (pSiO2-COO-Dex), which then was evaluated for the pharmacological effect of the payload on cultured ARPE19 cells before intravitreal injection. The Dex release profile was investigated in a custom designed dynamic dissolution chamber to mimic the turnover of vitreous fluid in rabbit eyes. Ocular safety, in vivo release, and pharmacodynamics were evaluated in rabbit eyes, and the human VEGF-induced rabbit retinal vascular permeability model. RESULTS Loading efficiency of Dex was 69 ± 9 μg per 1 mg of the pSiO2-COO-Dex particles. Dynamic in vitro release demonstrated a sustained mode when compared to free Dex, with the drug half-life extended by 5 times. The released Dex was unaltered and biologically active. In vivo drug release in rabbit eyes revealed a mode similar to the release seen in vitro, with a vitreous half-life of 11 days. At 2 and 4 weeks after a single intravitreal injection of pSiO2-COO-Dex particles (mean 2.71 ± 0.47 mg), intravitreal 500 ng of VEGF did not induce significant retinal vessel dilation or fluorescein leakage, while these events were observed in the eyes injected with empty pSiO2 particles or with free Dex. The retinal vessel score from fluorescein angiography for the control eyes was double the score for the eyes injected with pSiO2-COO-Dex. No adverse reaction was observed for the eyes injected with drug-loaded pSi particles during the course of the study. CONCLUSIONS The porous silicon-based Dex delivery system (pSiO2-COO-Dex) can be administered safely into vitreous without toxicity. Dex release from the porous silicon particles was sustained for 2 months and was effective against VEGF-induced retinal vessel reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drug release from PLGA microspheres attached to solids using supercritical CO₂.

Functionalization of a porous orthopedic implant with dexamethasone, a widely used anti-inflammatory drug, encapsulated within a biodegradable polymer for controlled release could help reduce or eliminate the inflammation response by the local tissue. In this research, we investigated the possibility of using supercritical carbon dioxide (CO₂) for attaching dexamethasone-loaded PLGA (polylactic...

متن کامل

Construction and evaluation of controlled-release delivery system of Abamectin using porous silica nanoparticles as carriers

Photolysis and poor solubility in water of Abamectin are key issues to be addressed, which causes low bioavailability and residual pollution. In this study, a novel hydrophilic delivery system through loading Abamectin with porous silica nanoparticles (Abam-PSNs) was developed in order to improve the chemical stability, dispersity, and the controlled release of Abamectin. These results suggest ...

متن کامل

Porous Carriers for Controlled/Modulated Drug Delivery

Considerable research efforts have been directed in recent years towards the development of porous carriers as controlled drug delivery matrices because of possessing several features such as stable uniform porous structure, high surface area, tunable pore size and well-defined surface properties. Owing to wide range of useful properties porous carriers have been used in pharmaceuticals for man...

متن کامل

The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold

In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astroc...

متن کامل

The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold

In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astroc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2016